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Abstract—In this project, we focus on optimizing the hyper-
parameters of Model Predictive Path Integral (MPPI) control
for a pushing task with non-trivial obstacles using Bayesian
Optimization Algorithm (BOA). We implement the BOA with
GPytorch library, a Gaussian Process (GP) library, to balance
exploration and exploitation effectively in the parameter space.
Our approach enhances the performance of MPPI in planar
pushing task by iteratively fitting a GP to known samples and uti-
lizing acquisition functions like Upper Confidence Bound (UCB)
and Expected Improvement (EI). We compare our optimization
results against three baselines: manually-tuned parameters and
parameters tuned by Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) method and another Bayesian Optimization
library implemented in scikit-learn. Our results demonstrate the
effectiveness of Bayesian Optimization in improving MPPI per-
formance, contributing to the research on practical applications
of GPs in robotics and control systems.

Index Terms—Bayesian Optimization, Gaussian Process, GPy-
Torch, Hyperparameter Optimization

I. INTRODUCTION

In this project, we delve into the investigation of Gaussian
Processes (GPs) for Bayesian Optimization [1] within the
context of optimizing the parameters of Model Predictive
Path Integral (MPPI) control, specifically for a pushing task
in a bullet pushing environment. The intricate pushing task
involves navigating through a non-trivial set of obstacles,
building upon the foundations established in previous research.
By leveraging a GP in Bayesian Optimization, our objective
is to uncover an optimal set of parameters for MPPI that can
efficiently execute a variety of pushing tasks.

Our methodology assumes that the initial state is known,
and the environment can be reset after each run during the
optimization of the parameters. We meticulously account for
the distinct scales and constraints on the parameters, such as
ensuring a positive noise variance. We implement Bayesian
Optimization using the GPytorch library [2] for our GP, and as-
sess the performance of MPPI with our optimized parameters
against two baseline comparisons. The first baseline employs
manually-defined parameters, while the second baseline adopts
a distinct optimization method, such as a black-box method
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like Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [3].

We exhibit the efficacy of GPs for Bayesian Optimization
in augmenting the performance of MPPI for complex pushing
tasks through a systematic, iterative process that strikes a
balance between exploration and exploitation. By fitting a GP
to known samples and harnessing acquisition functions like
Upper Confidence Bound (UCB) [4] or Expected Improvement
(EI) [5], our approach progressively refines the regions in
parameter space worth exploring. This enables us to minimize
the number of steps required to pinpoint a combination of
parameters in close proximity to the optimal combination,
rendering Bayesian Optimization suitable for scenarios where
sampling the function to be optimized is computationally
demanding.

Through the execution of this research, we aspire to con-
tribute to the burgeoning body of knowledge on the practical
applications of GPs in the realm of robotics and control
systems [6]. Our results underscore the potential of Bayesian
Optimization in enhancing MPPI performance within complex
environments, providing valuable insights for future investi-
gations and real-world applications in robotics and control
systems.

II. RELATED WORK

The traditional way of performing hyperparameter optimiza-
tion has been grid search, which is simply an exhaustive
searching through a manually specified subset of the hyperpa-
rameter space of a learning algorithm. Random Search replaces
the exhaustive enumeration of all combinations by selecting
them randomly. This can be simply applied to the discrete
setting, but also generalizes to continuous and mixed spaces.
It can outperform Grid search, especially when only a small
number of hyperparameters affects the final performance of
the machine learning algorithm [7]. However, both grid search
and random search share the following common limitations:
computational inefficiency and suboptimal performance.

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [3] is a state-of-the-art optimizer for continu-
ous black-box functions. It can effectively explore high-
dimensional solution spaces. By maintaining and updating
a multivariate normal distribution, the algorithm iteratively
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generates and evaluates solution vectors until an optimal so-
lution is identified. Notable for its adaptive step length adjust-
ment, efficient high-dimensional exploration, and robust global
search capabilities, CMA-ES has been extensively applied in
areas such as parameter optimization, machine learning, and
neural networks.

III. IMPLEMENTATION

A. Bayesian Optimization

Bayesian optimization provides an elegant method for ad-
dressing the black-box optimization problem by utilizing in-
formation from previous search points to determine the next
search point [8]. This approach has been demonstrated to
outperform other global optimization algorithms in terms of
efficiency and effectiveness [9].

Bayesian optimization operates by constructing a posterior
distribution of functions, typically a Gaussian process, that
best approximates the function to be optimized. As the number
of observations increases, the posterior distribution improves,
allowing the algorithm to identify regions in the parameter
space that are more promising for exploration and those that
are less relevant, as illustrated in Figure 1.

Fig. 1: Ackley’s function at y = 0, GP fit with random samples

The algorithm iteratively balances exploration and exploita-
tion based on its current understanding of the target function.
At each step, a GP model [10] is fitted to the known samples
(previously explored points), and the posterior distribution,
combined with an exploration strategy such as Upper Con-
fidence Bound (UCB) or Expected Improvement (EI), is
employed to determine the next point for exploration. This
process aims to minimize the number of steps required to
find a combination of parameters that closely approximates
the optimal combination. To achieve this, the method uses
a proxy optimization problem (maximizing the acquisition
function), which is computationally cheaper and can be solved
using common optimization tools. Consequently, Bayesian
Optimization is particularly well-suited for scenarios where
sampling the function to be optimized is computationally
expensive.

The pseudocode of the Bayesian Optimization Algorithm
(BOA) is presented in Algorithm 1 [11]. In this algorithm,
f represents the objective function of parameters x to be
optimized, X denotes the parameter boundary, S is the acqui-
sition function, and M signifies the Gaussian Process model.
We implemented the BOA based on the GPyTorch library
[2], a Gaussian process library built on PyTorch. GPyTorch
enables straightforward implementation of popular scalable GP
techniques and often significantly improves GPU utilization
compared to solvers based on the Cholesky decomposition.
Additionally, GPyTorch easily integrates with deep learning
frameworks.

Algorithm 1 Bayesian Optimization Algorithm

Input: f,X , S,M
D ← InitSamples(f,X )
for i ∈ D do

p(y|x,D)← FitModel(M,D)
xi ← argmaxx∈XS(x,p(y|x,D))
yi ← f(xi) ▷ Expensive step
D ← D ∪ (xi, yi)

end for

B. Hyperparameters Optimization for MPPI Controller

To accomplish the planar pushing task, we leverage a
flexible model predictive control (MPC) method. The MPPI
control, a sampling-based algorithm capable of optimizing
general cost criteria [12] [13]. This method has been demon-
strated to be applicable to a broad range of stochastic systems,
particularly those with dynamics represented by a neural
network [14], enabling a purely data-driven approach to model
learning within the MPPI framework.

The pseudocode of MPPI is shown in Algorithm 2 [14],
where F represents the transition dynamics model, K is the
number of samples, T is the number of timesteps, and u
is the initial control sequence. The predefined running cost
function and terminal cost function are represented by q
and Φ, respectively. The control hyperparameters Σ and λ
are optimized using the BOA. In the context of the MPPI
algorithm, Σ is the covariance matrix of the Gaussian noise
added to the control sequences during the sampling process,
and λ is a temperature parameter that affects the exploration-
exploitation trade-off in the optimization of control sequences.
A suitable choice of these hyperparameters is crucial for
the performance of the MPPI algorithm, and the Bayesian
optimization serves as an efficient method to fine-tune them.

By optimizing the hyperparameters Σ and λ using Bayesian
optimization, we can effectively enhance the performance
of the MPPI algorithm in various tasks. The optimization
process entails searching for an optimal set of hyperparameters
that minimize the cost function while maintaining a balance
between exploration and exploitation. This balance is critical,
as overly aggressive exploration may lead to instability and
inefficient control, while excessive exploitation could result in



Algorithm 2 Model Predictive Path Integral Control

Input: F,K, T, (u0, . . . ,uT−1),Σ, λ
Output: u0

D ←WarmupSamples(f,X )
while task not completed do

x0 ← GetStateEstimate()
for k ← 0 to K − 1 do

x← x0

Sample Ek = {ϵk0 , . . . , ϵkT−1}
for t← 1 to T do

xi ← F(xt−1,ut−1 + ϵkt−1)
S(Ek)+ = q(xi + λuT

t−1Σ
−1ϵkt−1)

end for
S(Ek)+ = Φ(xT )

end for
β ← mink S(Ek)
η ← ΣK−1

k=0 exp(−(S(Ek)− β)/λ)
for k ← 0 to K − 1 do

w(Ek)← exp(−(S(Ek)− β)/λ)/η
end for
for t← 1 to T − 1 do

ut+ = ΣK
k=1w(Ek)ϵkt

end for
SendToActuators(u0)
for t← 1 to T − 1 do

ut−1 ← ut

end for
ut−1 ← Initialize(uT−1)

end while

suboptimal performance due to inadequate exploration of the
control space.

IV. EXPERIMENTS AND RESULTS

In the experimental section of this project, we employed the
panda pushing environment as our testbed, wherein a robotic
arm is utilized to push an object to a designated location
while navigating through obstacles, as shown in Figure 2.
With respect to the controller, we use the pretrained multi-
step residual dynamics model.

(a) Free pushing scene (b) Obstacle pushing scene

Fig. 2: Box pushing task under free and obstacle environment

A. Implementation Details
We test the correctness of our BOA implementation and

success in finding the minimum objective of a 1D Ackley func-

tion (Figure 1) and then a Dd Ackley function.We decouple the
optimization loop and implement it in a easy-to-used ”ask-tell”
interaction pattern, and give the control of evaluating objective
function back to task, since for many tasks, the objective value
can only be obtained at the end of expensive execution and
our BOA should function as a plugin for them.

k (xi, xj) = exp

(
−d (xi, xj)

2

2l2

)
(1)

We use Martern kernel for our GP model as it is a extension
of the RBF kernel (Equation 1) and has a better generalization
capability. It has an additional parameter v which controls the
smoothness of the resulting function, and we choose v to be 2.5
indicates a twice differentiable function. In each optimization
iteration, the GP model is retrained based on updated dataset
for 50 epochs using Adam optimizer with 0.1 learning rate
and 1e-5 weight decay.

TABLE I: Comparasion of two types of acquisition functions

Aqusition Ackley 1D Ackley 2D
Min Objective Time Min Objective Time

TS 0.0003 6.49 0.3068 6.56
EI 0.1236 4.51 0.0366 4.51

Two type of acquisition functions are implemented, the
Thompson Sampling (TS) method and the Expected Im-
provement (EI) method. In our experiment with the Ackley
function, the Thompson Sampling method usually takes twice
the time for giving the next parameter suggestion due to a poor
serial implementation of sampling from Normal distribution
in PyTorch. Table I shows that even though the Expected
Improvement method has a faster converge on lower dimen-
sional problem, the diversity of sampling in the Thompson
Sampling method can lead to a stable optimization result on
higher dimensional problem.

The final optimizer for the planar pushing task is imple-
mented in a ”study-trial” design with auto logging and saving
functions. We treat each experiment as a study with a set of
hyper-hyperparameters (e.g. whether to include obstacle, ran-
dom target state, scale in the cost, etc.) and the hyperparameter
of MPPI controller is optimized through each trial (execute
pushing task once) within a study. Since we are comparing our
optimization results with other black-box optimization method
and another Bayesian Optimization implementation in scikit-
learn, we unified their interface in a ”ask-tell” style and also
keep input and output data types and structures consistent, so
that they will have the same interface within our optimization
study and lead to a clean and easy-to-use experiment script.

B. Experimental Setup

Throughout the experiments, we used manually adjusted
parameters, parameters optimized by the CMA-ES algorithm,
and parameters optimized by a widely used Bayesian algo-
rithm(called Bayesian Reference) [15] as baselines to compare
with our Bayesian optimization algorithm, conducting multi-
ple comparative experiments to comprehensively validate the
effectiveness of our algorithm.



The experimental component consists of two main parts:
hyperparameter training and performance validation.

In the training phase, we devised two distinct cost func-
tions. The first one involves setting a larger horizon for the
MPPI controller, defining the starting and ending points, and
allowing the MPPI to plan multiple paths from the starting
point to the endpoint. Subsequently, the cost of each trajectory
is computed and summed to obtain the cost function. This
optimization method does not require physically moving the
object, resulting in faster computations. However, since the
residual model we employ cannot guarantee that the object
is always pushed to the ideal position, significant positional
deviations may occur after several steps, rendering this cost un-
satisfactory in reflecting the actual performance in real-world
tasks. Consequently, we adopted the following cost function,
training hyperparameters in real planar pushing experiments.

We first established an overall cost function to evaluate the
efficacy of the robotic arm in pushing the object to the target
location. We set the maximum number of pushes in each epoch
to 20, with more than 20 pushes deemed as task failure. If
the deviation between the object and the target is less than
0.1 within 20 pushes, the task is considered successful. We
designed a heuristic cost function fcost based on several factors,
including the distance from the object to the target dgoal , the
number of pushes by the robotic arm N , and task failure P :

fcost = dgoal + α ·N + (1− β) · P (2)

Here, α is a hyperparameter used to balance the cost
magnitude of each component, β is set to 0 when the task is
successful, otherwise it is set to 0. We adjusted the parameters
based on the overall cost function to minimize the cost as much
as possible.

On this foundation, we established two training tasks. The
first task involves no obstacles, with the robotic arm pushing
the object to reach different locations. Within the accessible
range of the experimental environment, we randomly set target
points, changing them for each epoch. The second task entails
fixed obstacles, with the robotic arm pushing the object around
the obstacles to reach a fixed endpoint. These two scenarios
comprehensively cover all possible situations the robotic arm
might encounter while pushing objects.

C. Results
In the training process, we set epochs (times the planar

pushing task will be run) to 10, 50, and 500, respectively,
resulting in multiple sets of hyperparameters. Subsequently,
we conducted 100 tests for each set of hyperparameters,
recording the number of successful trials, the average number
of steps taken, and the average cost. The results for the
configuration with 10-epochs are presented in Table II. In the
table, ”Free Pushing” refers to an experimental environment
with no obstacles and random endpoints, while ”Obstacle
Pushing” denotes a fixed-obstacle, fixed-endpoint experimental
setting.

A 10-epochs training process is relatively short, and it is
evident that both the CMA-ES and Bayesian algorithms fail to

TABLE II: Optimization results of 10 epochs

Algo Free Pushing Obstacle Pushing
Cost Step Goal Cost Step Goal

BOA 0.79 5.18 98% 4.75 9.53 66%
BOA-REF 1.86 5.05 88% 4.76 9.56 66%

CMA-ES 0.89 5.04 97% 5.11 9.61 63%
Hand Tuned 0.78 4.99 98% 4.12 9.53 72%

achieve satisfactory results, with their performance in the two
experimental environments unable to match that of hand-tuned
parameters. However, our proposed algorithm clearly outper-
forms both the CMA-ES and Bayesian Reference methods,
enabling a faster discovery of more favorable hyperparameters.
For tasks with long durations, achieving better optimization
results in a shorter time frame is of particular importance, and
in this regard, our algorithm stands at the forefront.

We increased the number of training epochs to 50, and
the results are shown in Table III. It can be observed
that, in the free pushing task, both CMA-ES and Bayesian
Reference exhibit significant improvement compared to 10-
epochs, whereas the performance of our algorithm declines.
The efficacy of CMA-ES essentially surpasses that of hand-
tuned parameters. In the obstacle pushing task, our algorithm
demonstrates substantial enhancement compared to 10-epochs,
and achieves a considerable leading advantage in terms of
average loss, average steps, and success rate, outperforming
other algorithms.

TABLE III: Optimization results of 50 epochs

Algo Free Pushing Obstacle Pushing
Cost Step Goal Cost Step Goal

BOA 0.90 5.12 97% 3.02 8.34 81%
BOA-REF 0.77 4.92 98% 3.72 8.92 75%

CMA-ES 0.68 5.10 99% 4.76 9.56 66%
Hand Tuned 0.78 4.99 98% 4.12 9.53 72%

During the 50-epochs training process in the free pushing
task, our algorithm exhibited an anomalous decline in per-
formance. We postulate that this is due to the substantial
randomness in the process of the robotic arm pushing the
planar, and that the number of training steps was inadequate
to achieve a stable optimal solution. Therefore, we designed
an experiment with 500 epochs, as presented in Table IV.
In this case, it is evident that our algorithm surpassed the
hand-tuned parameters in both tasks, and in comparison with
two other algorithms, demonstrated a considerable advantage
in terms of the loss function and accuracy, even achieving
an impressive 86% success rate in the task of pushing the
planar while avoiding obstacles. It is particularly worth noting
that the aforementioned anomalous decline in performance has
been mitigated, resulting in the attainment of the anticipated
outcomes.

Even through each optimization runs result in different set
of hyperparameters, they still share a kind of convergence. The
distribution of them are draw in Figure 3. The λ is optimized
within [0, 1] and converged to about 0.1 while the Σ, as is



TABLE IV: Optimization results of 500 epochs

Algo Free Pushing Obstacle Pushing
Cost Step Goal Cost Step Goal

BOA 0.65 4.74 99% 2.53 9.15 86%
BOA-REF 0.76 4.88 99% 3.29 9.00 78%

CMA-ES 0.98 4.96 96% 4.11 9.73 72%
Hand Tuned 0.78 4.99 98% 4.12 9.53 72%

treated as a diagonal matrix, is optimized within [0, 10] and its
pivot elements are converged to 4.1, 5.2 and 5.8 respectively.

(a) Optimized λ ∈ [0, 1] (b) Optimized Σ ∈ [0, 10]

Fig. 3: Distribution of optimized parameters

In addition, we measured the average runtime of the CMA,
Bayesian Reference, and our algorithm, the result is shown in
TableV. It can be observed that the average single-step runtime
of the CMA-ES algorithm is significantly lower than that of
the Bayesian algorithms, while the runtime of our algorithm is
slightly behind Bayesian Reference, with the error still within
an acceptable range.

TABLE V: Runtime

Algorithm Runtime
CMA-ES 0.001
Bayesian-Opt 0.037
Ours 0.042

V. CONCLUSIONS

In conclusion, this project focuses on the application of
Bayesian Optimization Algorithm (BOA) for optimizing the
hyperparameters of Model Predictive Path Integral (MPPI)
control in a planar pushing task with non-trivial obstacles and
different targets. The GPytorch library is employed to imple-
ment BOA, effectively balancing exploration and exploitation
in the parameter space. The optimized MPPI controller is
compared against three baselines: hand-defined parameters,
CMA-ES, and Bayesian Reference algorithm. The results
demonstrated the effectiveness of BOA in enhancing MPPI
performance, contributing to the practical applications of GP
in robotics and control systems.

The experimental section of the project tested the BOA im-
plementation using the panda pushing environment, a robotic
arm pushing task with obstacles. The experiments were con-
ducted with different numbers of training epochs (10, 50, and
500) to assess the performance of the BOA in comparison
to the baselines. The results suggest that the proposed BOA
generally performs well compared to the other algorithms,

achieving better optimization results in shorter operating steps,
and showing improvement in cost function and accuracy.
However, it is important to note that the performance of the
BOA in the 50-epochs training process for the free pushing
task experienced an unexpected decline, which means that
BOA requires more training epochs to converge.

Overall, this project highlights the potential of Bayesian
Optimization in enhancing MPPI performance by selecting
better hyperparameters, offering valuable insights for future
research and real-world applications.
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