
Closing the Loop: Single-Image to Camera Pose
with Inverse NeRF and PoseCNN

Sibo Wang
Robotics

University of Michigan
Ann Arbor, United States

sibo@umich.edu

Yuxi Zhang
Robotics

University of Michigan
Ann Arbor, United States

yuxii@umich.edu

Yulun Zhuang
Robotics

University of Michigan
Ann Arbor, United States

yulunz@umich.edu

Abstract—In this paper, we present an efficient and robust sys-
tem for view synthesis and pose estimation, integrating PoseCNN
and iNeRF to achieve faster convergence and better camera pose
estimation. By employing PoseCNN to provide an initial guess
for the camera pose in iNeRF and generate object labels to mask
out unrelated objects in the scene, we accelerate the optimization
process in iNeRF. We demonstrate the effectiveness of our method
through extensive experiments on the PROPS dataset, reducing
translation and rotation errors by 44.1% and 44.2%, respectively,
while boosting the convergence time by 104%. Our work has the
potential to enhance the adaptability of iNeRF to a wide range
of scenarios and applications.

I. INTRODUCTION

The estimation of six degree of freedom (6DoF) camera
pose is a critical task in robotics, augmented reality, and
computer vision [1], [2]. Recent advances in deep learning and
differentiable rendering have led to new techniques for pose
estimation based on analysis-by-synthesis [3], [4]. However,
most of these methods require accurate 3D models of objects
or scenes, which can be challenging and time-consuming to
obtain.

Neural Radiance Fields (NeRF) is a recent breakthrough in
generative modeling that enables the capture of complex 3D
structures and optical properties from just a few RGB images
[5], [6]. The NeRF model can be used for rendering novel
views of the scene or object. iNeRF is then proposed, which
inverts a NeRF model for 6 DoF pose estimation [7]. iNeRF
takes three inputs: an observed image, an initial estimate of
the pose, and a NeRF model. It computes the appearance
differences between the pixels rendered from the NeRF model
and the pixels from the observed image. The gradients for
the estimated pose are the obtained via backpropagation. As
illustrated in Figure 1, this procedure is repeated iteratively
until the rendered and observed images are aligned, thereby
yielding an accurate pose estimate.

Despite its compelling result, a major limitation of iNeRF
is the constraints on initial estimate of the pose. For complex
scenes, iNeRF needs an informative prior pose fro the model
to converge. Specifically, the rotational uncertainty needs to
be within 40 degrees along an axis from the unit sphere. The

This is the final project for course DeepRob. The open-source code of the
project can be found in https://github.com/silvery107/fast-inerf

translational uncertainty needs to be within 0.2 meters [7]. To
address this issue, we propose to enhance the performance
of iNeRF by integrating the pose and label of objects from
PoseCNN [8]. Specifically, we assume a known relationship
between the pose of an object and the frame of NeRF, which
allows us to derive a more accurate initial camera pose based
on object pose and frame transformations. Such initial estimate
also relaxes the above-mentioned constraints. Additionally, we
incorporate pixel-level labels in the key-point sampling process
to replace SIFT.

To summarize, by integrating iNeRF with PoseCNN, we
(i) obtain more accurate initial camera pose based on more
relaxed and non-informative prior. (ii) introduce masked region
sampling based on pixel labels to remove the use of SIFT. (iii)
increase the overall convergence rate of iNeRF.

II. RELATED WORK

In our project, we integrate PoseCNN and iNeRF for pose
estimation and neural 3D shape representation, respectively, to
enable faster convergence of the rendering process and better
pose estimation.

A. Pose Estimation from RGB Images

Classical methods for object pose estimation detect and
match keypoints with known 3D models, but they neces-
sitate objects with rich textures to identify feature points.
In contrast, recent deep-learning approaches propose CNN-
based architectures for directly estimating object poses. For
instance, PoseCNN estimates the 6D pose of objects using
single RGB images and convolutional neural networks [8]. The
network takes an RGB image as input and outputs a 6D pose
comprising three translational and three rotational parameters.

By decomposing the pose estimation task into distinct
components, PoseCNN explicitly models their dependencies
and independencies. Initially, the network predicts an object
label for each pixel in the input image. Subsequently, it
calculates the unit vector from each pixel toward the center to
ascertain the 2D coordinates of the object center, while also
estimating the distance to the center. With these estimations,
the model recovers the 3D translation (T). To determine
the quaternion representation of rotation (R), the network
regresses convolutional features within the object’s bounding

https://github.com/silvery107/fast-inerf


Fig. 1: System architecture overview

box. PoseCNN is trained to minimize the discrepancy between
ground truth and predicted poses using a novel loss function
that accommodates symmetric objects.

In our work, we employ PoseCNN to estimate object pose as
an initial guess for the camera pose in iNeRF. Furthermore,
the object labels generated by PoseCNN serve to mask out
unrelated objects in the scene, accelerating the rendering
process in iNeRF.

B. Neural 3D shape representations

NeRF optimizes continuous volumetric scene functions us-
ing sparse input views to synthesize novel perspectives of
intricate environments [5]. By representing these scenes as 5D
neural radiance fields, NeRF can capture complex geometry
and materials through a basic MLP network. The input to
this network consists of a 3D location and viewing direction,
which are combined to predict volume density and view-
dependent radiance at specific spatial points. The model then
generates views by querying 5D coordinates along camera rays
and projects colors and densities into images using volume
rendering techniques.

NeRF excel in capturing high-frequency scene content, and
when combined with volume rendering techniques, they enable
a learned neural network to produce photo-realistic view
synthesis. PixelNeRF is an extension that addresses NeRF’s
slow training process, predicting NeRF models from input
images to generalize across various scenes or objects [9].

Unlike NeRF and its variants that learn a scene’s structure
from posed RGB images, iNeRF tackles the inverse prob-
lem of localizing new observations with unknown camera
poses [7]. iNeRF estimates the camera pose from an input
image by inverting the neural radiance field. It minimizes the
residual between pixels rendered from a NeRF and those in
an observed image, optimizing the camera pose. Leveraging

NeRF’s differentiable rendering nature, iNeRF uses gradient-
based optimization methods to determine the optimal camera
pose.

Building on the foundation of NeRF, PixelNeRF, and iN-
eRF, our work aims to develop a more efficient and robust
system for view synthesis and pose estimation. By integrating
PoseCNN into the iNeRF framework, we achieve faster con-
vergence and eliminate the need for an initial pose assumption,
enhancing the model’s adaptability to a wide range of scenar-
ios.

III. ALGORITHMIC EXTENSION

As shown in Figure 1, we propose to enhance the perfor-
mance of iNeRF by integrating the pose and label of objects
from PoseCNN. Specifically, if we assume known relationship
between the pose of an object and the frame of NeRF, then
a more accurate initial camera pose can be derived based on
object pose and frame transformations. Meanwhile, the pixel-
level labels can serve as key-point sampling in the iNeRF
pipeline to replace SIFT.

A. Pose initialization

In vanilla iNeRF, the authors have noted some restrictions
on the initial pose estimate [7]. The rotation error between the
true pose and the initial estimate should be on ”an axis along
the unit sphere” and within [−40, 40] degrees. The translation
error should be within [−0.2, 0.2] meters for simplistic scenes
and [−0.1, 0.1] meters for complex scenes. We propose to
use pose estimate from PoseCNN to remove or relax these
restrictions.

To utilize the object pose for camera pose initialization, we
must assume a relationship between the 6D pose of the center
object in the scene and the reference frame of the scene’s
NeRF model. Assumptions can take the forms of



1) The 6D pose of an object is aligned with the NeRF
frame, or the transformation between them is known.

2) The position of an object is at the origin of the NeRF
frame, or the translation between them is known.

The first assumption relies on careful construction or extensive
knowledge of the NeRF model, as we need to determine the
rotational relationship between object poses and the NeRF
frame. Let the known rotation and translation of the object
in Nerf frame be Rn and p. Further, let the rotation and and
translation of the object in PoseCNN camera frame be Rc and
r, then based on the geometric relationship shown in Figure
2, the rotation of the camera in NeRF frame can be found by

R = RnRc
⊤ (1)

the translation of the camera in NeRF frame can be found by

t = R(r− p) (2)

Thus, if the first assumption is satisfied, then the camera pose
can be estimated without any restrictions.

Fig. 2: Relationship between frames and poses

Comparatively. the second assumption is more relaxed and
acceptable in common scenes. As the origin of NeRF is at the
center of 3D scene box, in general, the translation between the
origin and the position of an object can be determined. For
instance, for the scene of PROPS Pose Dataset, we assume
the position of the red cracker box is aligned with the NeRF
frame’s origin.

Under this assumption, we are able to relax the camera
translation assumptions in vanilla iNeRF. Assuming the axis
of translation is given, we can accurately estimating the
magnitude of the translation using ∥d − p∥ = ∥r∥. Without
loosing generality, let the axis of translation be d1, then based
on Figure 2,

(d1 − p1)
2 + (d2 − p2)

2 + (d3 − p3)
2 = r21 + r23 + r22

⇒ (d1 − p1)
2 = r21 + r23 + r22 − (d2 − p2)

2 − (d3 − p3)
2

where the quadratic can then be solve analytically. In other
words, since we can accurately estimate the translation, we
can remove the restrictive bounds. For the scene of PROPS
Dataset, we assume p = 0 and thus

d1 =
√
r21 + r23 + r22 − d22 − d23 (3)

B. Mask region sampling

The output from PoseCNN can be further utilized in the
points sampling stage in iNeRF. We first briefly describe the
rendering process and the importance of key-point sampling
strategy. Then, we introduce and explain our novel masked
region sampling, whic is based on PoseCNN.

For each iteration of estimated camera pose, iNeRF needs
to render the pixels with NeRF and compare the error with
the objective image. To render each pixel in NeRF, we need
to compute the integral for the corresponding projected ray,

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (4)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
denotes probability that

the ray travels from tn to tf without hitting any other particle
[5]. NeRF discretizes the integral and solves weighted values
for n sampled points. Thus, O(nHW ) froward/backward
passes are required, where H,W are the image height and
width. The computation is is both time and memory consum-
ing. Specifically, the memory required for back-propagation of
all pixels is not affordable on any commercial GPU [7].

Thus, iNeRf introduced interest region sampling. The strat-
egy uses an interest point detector, such as SIFT, to localize
a set of candidate pixel locations in the observed image. The
pixel are then dilated to form interest regions, from which M
points are randomly sampled and used in the rendering-and-
compare pipeline. The dilation is to prevent the method from
only considering interest points on the observed image instead
of interest points from both the observed and rendered images.

In our proposed model, naturally, the pixel-level object
labels can be used as a mask for sampling points. Thus, we
propose a new key-point sampling strategy, masked region
sampling. First, we create a mask of all pixels that are
labeled as objects (excluding background). Then, we randomly
sample N points from the masked region, where N is a
hyper-parameter. Compared to interest region sampling, mask
region sampling removes the use of external feature extraction
algorithm (SIFT), while achieving the similar end goal, which
is to sample in regions where objects are likely to reside.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experimental design and
associated results that are used to analyze our method.

A. Experimental Setup

We utilize the PROPS Pose dataset [10] to train a NeRF
representation of the scene of a set of daily life objects. To
get a complete representation of the scene, we combine both
training and validation sets of RGB images (add up to 1000)
and uniformly sample 50, 100 and 150 images to form the
primitive source images, since the NeRF model trains best
with between 50-150 images [6] which exhibit minimal scene
movement, motion blur or other blurring artifacts. We use 100
images for final NeRF training. The peak signal-to-noise ratio
(PSNR) of each dataset setup is reported on Table I. Even



Fig. 3: Visualization of different sampling methods. We visualize the average of rendered images based on the estimated pose
at time t and the test image. Adopting Mask Region Sampling helps our method to fast recover camera poses that align the
rendered and test image to fine details. Interesting Region Sampling aligns the red mug, but fails to align the rest scene.

Fig. 4: NeRF representation of the PROPS pose dataset

though the camera extrinsic to each object in each image are
given, we still need to estimate the camera extrinsic to the
scene, so we take the advantage of the existing open-source
software COLMAP [11] to extract the necessary camera data
using structure from motion (SfM) and store them in a format
compatible with the original NeRF codebase.

The PROPS NeRF model is trained using a PyTorch im-
plementation of the original NeRF codebase for 100000 steps
to get the best PSNR performance (Table I) and the training
time is about 6 hours on a single Nvidia RTX 3060 GPU. The
rendering view of its reconstruction is shown in Figure 4. The
PoseCNN model is pre-trained on the PROPS Pose dataset and
has 51% 6D pose prediction errors within 5◦ rotation error and
5 cm translation error.

In evaluation, we randomly sampled a view of the scene as
the input image to our system and extract 6D pose predictions
and segmentations of each object in that view. We apply Pose
Initialization using the pose of the red creaker box as the
closest estimation of NeRF origin to get a initial guess of
the camera pose and then apply Mask Region Sampling to
generate regions containing interesting pixels.

The estimation of camera pose is optimized by comparing

the mean square error (MSE) between rendered image and the
target image only on a random sampled batch of interesting
pixels. We choose the batch size N to be 1024 [7] to have
a good balance between convergence speed and computa-
tional efficiency as demonstrated in the original iNeRF paper.
The gradients from these residuals are then backpropagated
through the NeRF model to produce the gradients for the
estimated pose. As illustrated in Figure 1, this procedure is
repeated iteratively until the rendered and observed images
are aligned.

To evaluate our method, we estimate d1 along x, y and z
axis separately and measure the analytical loss (Figure 5a and
5b), translation error (Figure 5c and 5d) and rotation error
(Figure 5e and 5f) with respect to optimization iterations.
We only plot loss and error curves for y and z axis for
trending analysis but quantitative results are given on Table
II by averaging 3 experiment runs.

B. Results

In Table I, we compare the effect of the number of images
used for NeRF model training and also the convergence over
training steps of each model. We found that PROPS NeRF
performs well with fewer than 100 images but too few images
will lead to blurry rendering. However, the NeRF model will
struggle and may hallucinate ”floaters” at the boundaries of the
box if too many images are given. We also found that PROPS
NeRF model usually converges around 100000 training steps,
and larger training steps may lead to overfit and decrease the
PSNR. Thus, we prepare 100 images from PROPS Pose dataset
to form the PROPS NeRF dataset and train it for 100000 steps.

Table II shows the performance of our algorithm extension
based on the original iNeRF implementation. With Pose Ini-
tialization and Mask Region Sampling techniques, our method
can achieve 44.1% and 44.2% improvements on mean transla-
tion errors and mean rotation errors respectively, and also 2.04
times faster to converge to the target camera pose. In ablation



(a) Estimation along y axis (b) Estimation along z axis

(c) Estimation along y axis (d) Estimation along z axis

(e) Estimation along y axis (f) Estimation along z axis

Fig. 5: Training loss, translation errors and rotation errors w.r.t.
optimization iterations. PI stands for Pose Initialization and
MR stands for Mask Region Sampling.

TABLE I: Comparisons between number of images and train-
ing steps for PROPS NeRF model

Number of Images PSNR
50k 100k 150k

50 22.84 24.13 24.54
100 22.26 26.08 25.01
150 21.79 25.01 24.22

study, we only apply Pose Initialization for pose estimation.
The results shows a 9% decrease on translation errors and
13.6% decrease on rotation errors, and also requires 33 more
steps optimization iterations to convergence. The plot of one
experiment run with respect to optimization iterations for y
and z axes is shown in Figure 5.

TABLE II: Comparisons of pose estimation performance be-
tween original iNeRF and iNeRF enhanced with Pose Initial-
ization and Mask Region Sampling

w/ PI & MR w/ PI iNeRF [7]
Mean Tanslation Error < 5cm 0.98 0.89 0.68
Mean Rotation Error < 5◦ 0.88 0.76 0.61
Iterations to Convergence 122 155 250

Intuitively, we visualize the average of rendered images
based on the estimated pose at time t and the test image
for different sampling methods in Figure 3. Adopting Mask
Region Sampling helps our method to fast recover camera

poses that align the rendered and test image to fine details.
Interesting Region Sampling aligns the red mug, but fails to
align the rest scene.

V. CONCLUSIONS

In this paper, we have presented an efficient and robust
system for view synthesis and pose estimation by integrat-
ing PoseCNN and iNeRF. Our method leverages the pose
and object label predictions from PoseCNN to improve the
initial camera pose estimation and accelerate the optimiza-
tion process of camera pose estimation in iNeRF. We have
demonstrated the effectiveness of our approach through exten-
sive experiments on the PROPS dataset, achieving significant
improvements in both translation and rotation errors while
reducing convergence time.

Our work contributes to the ongoing efforts to develop
more efficient and robust systems for view synthesis and pose
estimation, enhancing the adaptability of iNeRF to a wide
range of scenarios and applications. In future work, we plan to
explore the integration of additional deep-learning approaches
for pose estimation and investigate the potential of our method
in real-world applications, such as robotics, augmented reality,
and virtual reality.

REFERENCES

[1] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “KPAM: KeyPoint
affordances for category-level robotic manipulation,” in Springer Pro-
ceedings in Advanced Robotics. Springer International Publishing,
2022, pp. 132–157.

[2] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake, “Label fusion:
A pipeline for generating ground truth labels for real RGBD data of
cluttered scenes,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, May 2018.

[3] X. Chen, Z. Dong, J. Song, A. Geiger, and O. Hilliges, “Category level
object pose estimation via neural analysis-by-synthesis,” in Computer
Vision – ECCV 2020. Springer International Publishing, 2020, pp.
139–156.

[4] K. Park, A. Mousavian, Y. Xiang, and D. Fox, “Latentfusion: End-to-
end differentiable reconstruction and rendering for unseen object pose
estimation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106,
2021.

[6] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions on
Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[7] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y.
Lin, “inerf: Inverting neural radiance fields for pose estimation,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 1323–1330.

[8] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
arXiv preprint arXiv:1711.00199, 2017.

[9] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelnerf: Neural radiance
fields from one or few images,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
4578–4587.

[10] X. Chen, H. Zhang, Z. Yu, S. Lewis, and O. C. Jenkins, “Progress-
labeller: visual data stream annotation for training object-centric 3d
perception,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 13 066–13 073.

[11] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.


	Introduction
	Related Work
	Pose Estimation from RGB Images
	Neural 3D shape representations

	Algorithmic Extension
	Pose initialization
	Mask region sampling

	Experiments and Results
	Experimental Setup
	Results

	Conclusions
	References

