
Kinodynamic RRT Practice
Yulun Zhuang

Robotics
University of Michigan

Ann Arbor, United States
yulunz@umich.edu

Abstract—In this paper, an efficient implementation of
the Kinodynamic RRT algorithm and its bidirectional
variant are presented. The planners is demonstrated using
a planar hovercraft robot to find a path within the maze
with a non-trivial set of obstacle walls. The performance
statistics is compared in terms of the number of motion
primitives, path qualities and the computation time.

Index Terms—Motion Planning, Kinodynamic RRT

I. INTRODUCTION

Motion planning is a fundamental problem in robotics,
involving the generation of a feasible path for a robot
from a start state to a goal state while avoiding obstacles
[1]. This task becomes significantly more complex in
kinodynamic planning, where the robot’s dynamics and
kinematics are taken into account. Kinodynamic Rapidly
Exploring Random Trees (RRT) [2], a variant of the
classic RRT algorithm [3], is specifically designed to
handle such complexities. It is particularly relevant in
applications where the dynamics of the robot cannot
be decoupled from its spatial navigation, such as in
autonomous vehicles, and aerial robotics.

In kinodynamic planning, the solution must respect the
robot’s dynamic constraints and kinematic feasibility [4].
This makes the problem more challenging than standard
path planning, as it requires considering the differential
constraints in robot dynamics. The key challenge lies in
ensuring that the generated path is dynamically feasible,
meaning the robot can physically follow the path given
its motion capabilities and limitations.

II. IMPLEMENTATION

In this section, the detailed implementation of the
Kinodynamic RRT algorithm is discussed, outlining the
specific steps and methodologies employed to address
the complexities of kinodynamic planning.

This is the final project for course ROB 422: Introduction to
Algorithmic Robotics. The open-source code of the project can be
found in https://github.com/silvery107/motion-planning-practice.

Fig. 1. The demonstration of the implemented kinodynamic RRT
algorithm with a planar hovercraft robot model in PyBullet. The
searched path is shown in red, the explored path is shown in blue and
the configuration matrix of the maze is shown at the bottom right.

A. RRT Planner

The RRT is an algorithm designed to efficiently search
non-convex, high-dimensional spaces by randomly build-
ing a space-filling tree. The tree is constructed incre-
mentally from samples drawn randomly from the search
space and is inherently biased to grow towards large
unsearched areas of the problem.

In order to build the tree and extract a path from goal
to start once searched states are connected, a meta node
is defined as a data class with two fields: state x and a
pointer points to its parent node. The search tree T is
a container build upon the meta nodes, with capabilities
to query the nearest neighbor of a given node and add
a given node as its vertex at the back end. Therefore,
a general RRT path planning pseudo code is shown in
Algorithm 1.

B. Dynamic Model

To formulate the kinodynamic planning problem, a
planar hovercraft robot model is used for demonstration.

https://github.com/silvery107/motion-planning-practice


Algorithm 1 RRT Path Planning
Input: xstart, xgoal
Output: PATH(T .back())
T .init(xstart)
for k = 1 to K do

xrand ← RANDOM STATE()
xnear ← T .query(xrand) ▷ nearest neighbor
xprev ← xnear
while True do

xnew ← EXTEND(T , xprev, xrand)
if COLLISION(xnew) then

break
end if
T .add vertex(xnew)
xprev ← xnew
if IS CONNECT(xnew, xrand) then

break
end if

end while
if IS CONNECT(T .back(), xgoal) then

break
end if

end for

The dynamic model is defined as following.

• Configuration space: q = [x, y, θ]T

• State space (phase space): x = [q, q̇]T

• Control input: u = [fx, fy, τz]
T

The continuous state space model

ẋ = [ẋ, ẏ, θ̇, ẍ, ÿ, θ̈]T

=

[
03 I3
03 03

]
x+


03

1/m
1/m

1/I

u

= Ax+Bu

where m is the mass of the robot and I is moment of
inertia. The discretized state space model via forward
Euler integration

xk+1 = xk + ẋkdt

= (I+Adt)xk +Bdtuk

= Adxk +Bduk

where dt is the simulation time step. However, a semi-
implicit Euler method is used in the actual implementa-
tion, which can avoid the energy increment and leads to

more accurate discretization, since it is the integration
method used within PyBullet.

q̇k+1 = q̇k + q̈kdt

qk+1 = qk + q̇kdt

C. Distance Metrics

The choice of the metric for distance comparison
between states has a strong effect on the likelihood of
finding a solution. In kinodynamic planning, the standard
Euclidean distances between two states often correspond
poorly with the length of paths between two states.
For example, moving sideways in a Dubins car requires
performing ”parallel parking” maneuvers that require
moving a substantial distance forward and backward
compared to the distance moved sideways [5].

The ideal metric is the optimal cost to go from one
state to another, but its computation is as difficult as
the original planning problem. Therefore, the weighted
Euclidean distance is chosen to relieve this issue by
manually tuning the weights of each individual state until
a reasonable rate of convergence is observed.

dist(x1,x2) = ∥W(x1 − x2)∥2 (1)

where W is a diagonal matrix with weights of state as
its diagonal elements respectively.

D. Applying Controls

The EXTEND step in Algorithm1 is formulated to
find the optimal control input to minimize the distance
between new states steered by motion primitives and
the given target state xrand, while observing the system
dynamics xnew = f(xnear, ui).

u∗ = min
ui

dist(f(x, ui), xrand) (2)

xnew = f(x, u∗) (3)

where i = 1, . . . , N and N is the number of motion
primitives.

There are two ways to define a set of proper motion
primitives. One is, by heuristic, discretize the control
space into grids and for each dimension, choose a
unit control effort from [−1, 0, 1] with a corresponding
weight, then take a full combination of them. By adjust-
ing the connectivity (e.g. 4-connect, 8-connect) of the
discretized control space, we can have different number
of primitives which represents different motion agility.
Another way is to random sample N primitives in range
of the boundary of control inputs U [5]. This method
can save some parameter tuning effort since only N
is problem dependent, but the computation cost is also
increased with the choice of N .



E. Nearest Neighbor Search

The nearest neighbor search is the most time expensive
step in a RRT planner especially in high dimensional
search problems. Since the convergence rate of RRT
search is usually a bit random, use a search container
with low time complexity of nearest neighbor query can
greatly save the search time.

The most used data structure to find the nearest
neighbor in high dimensions is the K-dimensional (KD)
tree [6]. The KD tree is a binary tree in which every node
is a k-dimensional point. Every non-leaf node can be
thought of as implicitly generating a splitting hyperplane
that divides the space. The nearest neighbor of a query
point can be determined with only O(logN) in time
complexity, which is much faster than O(DN2) in brute
force and independent with the state dimension D (not
computing the actual D dimensional distance, but the
parameters of separation hyperplanes).

However, building a static k-d tree from N points
takes O(N logN) complexity, and the number of data
points is growing at every iteration. Note that most
KD tree implementations do not provide the insertion
or removing operations even through these operations
take O(logN) time, but the re-balancing of the tree
will harm the overall search performance. Therefore,
the implemented RRT container utilize a lazy-rebuild
strategy to further save the time costs of construction.

Instead of using only one KD tree and rebuild the tree
in every iteration, a new vertex is inserted, an auxiliary
list is used to buffer new coming data points. The KD
tree is rebuild in a lazy manner: only when the buffer list
reaches the maximum buffer size. The nearest neighbor
query is then divided into two steps, first query both the
KD tree and the list (brute force), and then return the
result with smaller distance.

F. Steering between States

In order to moving between two precise states, or
”connect” between two tree nodes, a two-point boundary
value problem (BVP) is formulated and solved locally
as long as the distance between two states are smaller
than a threshold [1]. A 4th order collocation algorithm
[7] is used to solve this BVP problem. The state and
control input are concatenated as the extended state space
s = [x,u]T ∈ R9 so that the dynamics ẋ = f(x,u) can
be viewed as a first order ODE system

ds

dt
= f(t, s) =

[
Ax+Bu

03×1

]
(4)

s.t. g(s(a), s(b)) = 0 (5)

where the boundary conditions g(·) drive the residuals
between solution and boundary states to zero.

An important part of the process of solving the BVP is
providing a guess for the required solution. The quality
of this guess can be critical for the solver performance
and even for a successful computation. The initial guess
of collocation states is the linear interpolation between
the start and end states.

The steering between states via solving the BVP is
used when the latest node of the search tree has already
reached at a circle region in the task space (to simplify
the problem, this region is assumed to have no obstacle)
around the goal, so that it can provide a precise steered
states to drive the robot to the goal.

G. Bidirectional Planning

The idea of bidirectional planning using RRT (Algo-
rithm 2) is to grow two search trees with one rooted at
the start and the other at the goal [8]. At each iteration,
both the start and the goal trees are extended toward a
randomly sampled configuration. Then, if the trees are
close enough, a connection will be attempted between
them. If connected, the joined trees contain a unique
path from the start to the goal.

However, in the kinodynamic planning problem, it is
hard to ”connect” arbitrary states even through both tree
has overlapped edges. Thus, the BVP steering is used in
a similar way as the single tree search but to connect
nodes from both trees once the distance between them
are smaller than a threshold [1]. Note that the xsteer is
a list of steered states computed by the BVP solver.

Algorithm 2 Bidirectional RRT Path Planning
Input: xstart, xgoal
Output: BI PATH(Ta.back(), Tb.back(),xsteer)
Ta.init(xstart)
Tb.init(xgoal)
for k = 1 to K do

xrand ← RANDOM STATE(Ta, Tb)
Ta.connect(xrand)
if IS CONNECT(Ta.back(), Tb.back()) then

xsteer = BV P (Ta.back(), Tb.back())
break

end if
SWAP(Ta, Tb)

end for

III. RESULTS

This section will demonstrate and analyze the perfor-
mance of the kinodynamic RRT algorithm implemented



in Python. The testing robot model is a planar hovercraft
robot which has the ability to accelerate and decelerate in
2D positions and orientation (Figure 1). The bidirectional
variant of the kinodynamic RRT is also implemented
and compared in terms of average path quality and
computation time (Table I).

Fig. 2. The visualization of the kinodynamic RRT. The searched path
is shown in red, and the explored path is shown in blue.

A. Environment Setup

The experiment environment is setup in the PyBullet
[9] a python module for robotics with real-time collision
detection and multi-physics simulation [10].

1) Create the URDF of a hovercraft robot: Omni-
directional movement control (i.e. planar joint) is not
supported in PyBullet, and reset the base position and
orientation of the robot is undesired and ill-posed when
executing the planned trajectory.

The workaround is to created a fixed world link in the
URDF, and connect three additional joints (two prismatic
for positions and one continuous for orientation) to the
robot body such that the 3 DOF of planar motion is
retrieved.

2) Track the planned trajectory via PD control: Given
the configuration of the robot is controllable through
joint commands, the planned trajectory (treat as joint
positions) can be executed via the build-in PD controller.
In this way, the realistic physics execution of trajectory
tracking can be observed.

3) Build a custom 2D maze from json: In order
to build a generalized testing platform for the RRT
based planning algorithms, a 2D maze builder from
configuration file is implemented. A 10×10 meter maze
can be represented as a 2D matrix with numbers and edit
through a simple json file.

B. Algorithm Evaluations

Fig. 3. The visualization of the bidirectional kinodynamic RRT. The
searched path is shown in red, the explored path of the start tree and
the goal tree are shown in red and green respectively.

The mass m of the robot is 1 kg, and its moment
of initial I is 1 kg · m2. The state bounds X are in
range of [−10, 10] m for positions, [−π, π] rad for
orientation and [−1, 1] m/s or rad/s for linear and
angular velocities. The control bounds U are in range of
[−1, 1] N or N ·m for force and torque. The path quality
is evaluated according the accumulated sum of the Eu-
clidean distance between path waypoints

∑
∥qi+1−qi∥.

TABLE I
PERFORMANCE STATISTICS FOR VARIOUS EXAMPLES

No. of Random Path Comput. Time (s)

Algorithm Controls Controls Quality Min Max Avg.

KdRRT

6 False 18.23 1.45 14.67 7.25
26 False 14.41 3.24 22.55 8.99
6 True 29.46 2.41 21.49 10.78

26 True 20.71 0.75 36.25 7.54
52 True 18.73 2.28 11.42 5.93

BiKdRRT

6 False 19.10 0.21 3.05 1.71
26 False 20.90 0.48 4.33 1.85
6 True 22.79 0.77 6.16 2.81

26 True 21.59 0.63 5.32 2.72
52 True 20.19 1.55 6.84 3.03

Figure 2 shows an example result of the searched path
from the standard kinodynamic RRT, and Figure 3 shows
another example result from the bidirectional variant of
the kinodynamic RRT. The performance statistics of both
algorithms are further studied and compared in Table I.
All numbers, except the minimum and maximum, are
calculated over the average of 10 times of execution.



In terms of the number of motion primitives, 6 and
26 primitives stand for 4-connected and 8-connected
discretization.

A few conclusions can be drawn from Table I.
• As the number of motion primitives increasing from

6 to 26, the path qualities of both algorithms are
generally improved, but the average computation
time become slower due to the increased amount
of collision detections.

• The bidirectional variant RRT can run about 3 times
faster than the single tree version, but the quality of
bidirectional searched path is usually worse than the
path from standard search tree. The reason behind
is that a bidirectional search will introduce more
random states and both trees may connect at a point
far from the optimal path from start to goal.

• The random uniform sampled motion primitives
performs worse than the set of heuristic selected
ones, also the convergence time is affected due to
some portion of non-representative primitives.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge university
press, 2006.

[2] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinody-
namic planning,” The international journal of robotics research,
vol. 20, no. 5, pp. 378–400, 2001.

[3] S. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Research Report 9811, 1998.

[4] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic
motion planning,” Journal of the ACM (JACM), vol. 40, no. 5,
pp. 1048–1066, 1993.

[5] K. Hauser, “Robotic systems,” Draft in progress (cit. on p. 20),
2020.

[6] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18,
no. 9, pp. 509–517, 1975.

[7] J. Kierzenka and L. F. Shampine, “A bvp solver based on
residual control and the maltab pse,” ACM Transactions on
Mathematical Software (TOMS), vol. 27, no. 3, pp. 299–316,
2001.

[8] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient
approach to single-query path planning,” in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), vol. 2. IEEE, 2000, pp. 995–1001.

[9] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[10] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH
2015 Courses, 2015, p. 1.

APPENDIX

MOTION PLANNING PRACTICE SOFTWARE

Taking the opportunity of this project, I extended the
scope of my implementations to make it an starters
friendly motion planning practice software. Demonstra-
tion scripts are also extended to a KUKA iiaw robot arm
with iterative inverse kinematics, and planned trajectory
is tracked via the build-in PD controller.

Thanks to the ROB 422 course and Professor Dmitry
Berenson, most implemented algorithms are taken from
homeworks, but optimized for readability and efficiency.

(a) RRT KUKA (b) A*

(c) RRT (d) Bidirectional RRT

https://github.com/silvery107/motion-planning-practice

	Introduction
	Implementation
	RRT Planner
	Dynamic Model
	Distance Metrics
	Applying Controls
	Nearest Neighbor Search
	Steering between States
	Bidirectional Planning

	Results
	Environment Setup
	Create the URDF of a hovercraft robot
	Track the planned trajectory via PD control
	Build a custom 2D maze from json

	Algorithm Evaluations

	References
	Appendix: Motion Planning Practice Software

