
Dynamic Object Removing SLAM adapting MonoRec

Yulun Zhuang1, Hao Liu1, Xingqiao Zhu1, Janani Peri2, Vaishnavi Harikumar2

Abstract— In this paper, we present a new dynamic object
removing SLAM method named MonoRec-SLAM. Our method
adapts the MaskModule from MonoRec, a dense 3D dy-
namic environments reconstruction architecture. The adapted
MaskModule aims to predict a mask indicating the probability
of a pixel belonging to a moving object useing a set of cost
volumes that encode geometric priors between frames. The
segmented frames are then fed into ORB-SLAM3 to obtain
the enhanced frames without dynamic objects. Results are
evaluated on the KITTI and TUM datasets and compared with
DynaSLAM in terms of Absolute Pose Errors (APE), mask
inference and camera pose tracking time. We demonstrated that
our method achieves an average APE improvement by 6.03%
on KITTI dataset, obtains a more static map of the scenes,
and achieves a great balance between real-time capability and
dynamic object masking. Additionally, it is 42.61% faster in
mask inference and takes 31.35% of the time in camera pose
tracking in comparison with DynaSLAM, enabling it to run in
real-time (∼10 FPS).

I. INTRODUCTION

SLAM (Simultaneous Localization and Mapping) is a
technique used in robotics and computer vision that allows
a robot or camera to map an unknown environment while
simultaneously estimating its own position within that en-
vironment. When visual data, such as images or video is
utilized to construct the map and estimate the position of
the camera, it is called Visual SLAM. However, traditional
visual SLAM systems can struggle in environments with
moving objects because they are not static and may not
be included in the map. As a consequence, they can only
manage small fractions of dynamic content by classifying
them as outliers to such static model. Although the static
assumption holds for some robotic applications, it limits the
applicability of visual SLAM in many relevant cases, such
as intelligent autonomous systems operating in populated
real-world environments over long periods of time. Dynamic
Visual SLAM systems are designed to handle these types
of environments by detecting and tracking moving objects
separately from the rest of the scene and incorporating this
information into the SLAM algorithm to produce a more
accurate map of the environment. Many previous works have
attempted to mask out dynamic objects in order to improve
the efficiency of visual SLAM. [1] [2].

This paper is for the final project of course EECS 568, Mo-
bile Robotics. The open-source code of the project can be found in
https://github.com/silvery107/monorec-slam

1Yunlun Zhuang, Hao Liu and Xingqiao Zhu are with are with
the Department of Robotics, University of Michigan (yulunz, wdliu,
xingqiao)@umich.edu

2Vaishnavi Harikumar and Janani Peri are with the Department
of Aerospace Engineering, University of Michigan (ivaishi,
pjanani)@umich.edu

(a) RGB frame (b) Segmented mask

(c) Segmented frame (d) Enhanced keyframe

Fig. 1: Visualization of dynamic object removing

In this paper, we propose a new method called MonoRec-
SLAM for dynamic object removing SLAM, which is a com-
bination of Monorec [3] and ORB-SLAM3 [4]. MonoRec-
SLAM utilizes the Mask-Module from MonoRec, a dense 3D
dynamic environments reconstruction architecture, to predict
a mask indicating the probability of a pixel belonging to
a moving object. The frames are segmented and then put
into ORB-SLAM3 to obtain enhanced frames that exclude
dynamic objects. The MonoRec-SLAM method is then tested
on two datasets: KITTI and TUM, and then compared with
DynaSLAM in terms of Absolute Pose Errors (APE), mask
inference, and camera pose tracking time.

The paper is structured as follows: Section II provides
a comprehensive overview of related research, Section III
presents the methodology in detail, Section IV includes
the evaluation and discussion, and Section V concludes the
paper.

II. RELATED WORK

A. DynaSLAM

DynaSLAM [1] is a real-time dense SLAM system de-
signed for dynamic environments. It is capable of recon-
structing and tracking the 3D geometry of a scene while
simultaneously detecting and tracking dynamic objects in the
environment.

The system uses a stereo camera setup and relies on a
combination of keyframe-based and direct image alignment
methods to estimate camera poses and reconstruct the scene.
To handle dynamic objects, DynaSLAM leverages a state-
of-the-art object detection and tracking network, which uses
a Mask R-CNN architecture trained on the COCO dataset.

DynaSLAM also incorporates a novel probabilistic fusion
framework that enables it to fuse 3D reconstructions from
multiple viewpoints into a single, consistent model. This

https://github.com/silvery107/monorec-slam


Fig. 2: General pipeline for dynamic object removing in camera pose tracking

allows the system to maintain a coherent and accurate
representation of the environment, even when dealing with
dynamic objects and camera motion.

Overall, DynaSLAM represents a significant advancement
in dense SLAM systems, particularly in its ability to handle
dynamic environments. The greatest issue of DynaSLAM is
that its operation frequency is not quick enough to support
real-time operation.

B. YOLACT

YOLACT [5] is a simple, fully convolutional model for
real-time instance segmentation. YOLACT can be trained
on only one GPU and is the first real-time (above 30
FPS) approach with around 30 mask mAP on COCO test-
dev among various instance segmentation methods tested
on COCO. YOLACT produces instance masks by linearly
combining the prototypes with the mask coefficients instead
of without an explicit feature localization step (e.g., feature
re-pooling as Mask R-CNN).

The complex task of instance segmentation is broken into
two simpler tasks in YOLACT. In the first task, FCN [6]
is used to produced a set of prototype masks, while in the
second task, a vector of mask coefficients is predicted after
adding an extra head to the object detection. The two parallel
tasks are assembled and tested through NMS, and a final
mask will be generated for the instances surviving NMS. In
this way, YOLACT produces very high-quality masks and
and exhibits temporal stability for free.

III. METHODOLOGY

In this work, the MonoRec architecture is used to obtain
masks and masked images of the KITTI and TUM datasets
that are being tested. These masks are then used to generate
masked images. Once the masks and masked images are
generated, these are passed into ORB-SLAM3 to map the
environment while the dynamic objects are masked. The
MonoRec and ORB-SLAM3 architecture is described as
follows:

A. MonoRec

MonoRec is a semi-supervised learning-based approach
for dense 3D reconstruction of dynamic environments using
a single moving camera. The proposed method utilizes a
combination of supervised and unsupervised learning to
handle the challenges of reconstructing dynamic scenes while
accounting for camera motion. The MonoRec approach uses
a sequence of consecutive frames, and their corresponding
camera poses to generate a dense depth map for a given

keyframe. This architecture comprises of two main modules:
the MaskModule and the DepthModule. The MaskModule
predicts masks for moving objects, which improves depth
accuracy and reduces noise in 3D reconstructions while the
DepthModule generates a depth map from the masked cost
volume. For this project, only the MaskModule was used.
Figure 4 shows a flowchart that defines the MaskModule of
MonoRec.

Fig. 4: Architecture of the MaskModule [3]

The MaskModule in MonoRec aims to predict a mask
indicating the probability of a pixel belonging to a moving
object. To do this, the MaskModule uses a set of cost
volumes that encode geometric priors between the keyframe
and other frames in the sequence. These cost volumes
provide information about inconsistencies in depth estimates
due to moving objects. However, geometric priors alone
are not enough to accurately predict moving objects, so
the MaskModule also uses pre-trained ResNet-18 features
to encode semantic priors. The MaskModule is designed as
a U-Net architecture with skip connections, and it can be
applied to different numbers of frames without the need for
retraining.

B. ORB-SLAM3

ORB-SLAM3 is a visual-inertial simultaneous localization
and mapping (SLAM) system that can use monocular, stereo,
and RGB-D cameras with pinhole and fisheye lens models.
The system has two main components:

The tightly integrated visual-inertial SLAM system is a
component of ORB-SLAM3 that uses feature-based tracking
and mapping to estimate the camera trajectory and map
the environment. It also tightly integrates visual and inertial
measurements to improve accuracy and robustness. The
system relies on Maximum-a-Posteriori (MAP) estimation,
even during the IMU initialization phase, which allows it to
operate robustly in real-time, in small and large, indoor, and
outdoor environments. The visual-inertial SLAM system can
use monocular, stereo, and RGB-D cameras with pinhole and
fisheye lens models.



Fig. 3: Visualization of improvements of dynamic object removal in comparison between MonoRec-SLAM and ORB-
SLAM3. Left: APE error map of trajectories from MonoRec-SLAM on sequence 07 of KITTI dataset; Right: APE errors
of two methods w.r.t. trajectory time.

The multiple map system is a component of ORB-SLAM3
that uses a new place recognition method with improved
recall to allow the system to seamlessly merge maps when
revisiting mapped areas. The system can reuse all previous
information to boost accuracy, even if the observations are
widely separated in time or come from a previous mapping
session. This allows ORB-SLAM3 to survive long periods of
poor visual information and to maintain accuracy over time.

After running the combination of the adapted MaskModule
from MonoRec and ORB-SLAM3 which we have introduced
as MonoRec-SLAM, a map of the static environment is
obtained while the dynamic objects are masked.

The APE or Absolute Pose Error is calculated with respect
to the ground truth for MonoRec-SLAM, DynaSLAM, and
ORB-SLAM3. APE is calculated as the Euclidean distance
between the ground truth position and the estimated position
of the camera, and the angle difference between the ground
truth orientation and the estimated orientation of the cam-
era. The APE value is calculated for each frame and then
averaged over all frames to obtain the final APE value [7].

Figure 4 consists of two graphs that compare the APE
for each algorithm to compare their individual performances.
The following section discusses the comparison of all three
algorithms that advocates MonoRec-SLAM to have the best
performance for most cases tested.

IV. EVALUATION AND DISCUSSION

The algorithms discussed in previous sections were evalu-
ated on the following datasets and the results were compared.
A brief video presentation about our work can be found in
https://youtu.be/h6W1JF9h4wk.

A. Datasets

We evaluated MonoRec-SLAM and DynaSLAM with the
KITTI dataset and TUM dataset since they contain moving
objects in some sequences which are convenient for us to
generate masks. Besides, ground truth trajectories are in-
cluded in these datasets, which are considered as the baseline
for performance evaluation of our method by calculating

(a) KITTI odometry dataset (b) TUM dynamic scenes

Fig. 5: General setup of datasets used for evaluation

Absolute Pose Errors (APE). We only used the monocular
data in these datasets.

The KITTI dataset [8] is a widely used dataset in mobile
robots and autonomous driving. It is made up of hours of
traffic scenarios captured using a range of sensor modalities,
including high-resolution RGB, grayscale stereo cameras,
and a 3D laser scanner. The odometry benchmark of KITTI
consists of 22 stereo sequences, saved in lossless png format:
11 sequences (00-10) with ground truth trajectories for
training and 11 sequences (11-21) without ground truth for
evaluation. We used Sequence 00, 04, 05 and 07 to evaluate
MonoRec-SLAM and DynaSLAM and compared the results,
as shown in Figure 5a.

The TUM dataset [9] is an RGB-D dataset, providing color
and depth images from a Microsoft Kinect sensor along the
sensor’s ground-truth route. The data was collected at a full
frame rate of 30 Hz with a sensor resolution of 640x480.
A high-accuracy motion-capture system with eight high-
speed tracking cameras (100 Hz) provides the ground-truth
trajectory. To test the 2 methods, we use the dynamic object
sequence, which is intended to evaluate the robustness of
visual SLAM and odometry algorithms to slowly moving
dynamic objects, as illustrated in Figure 5b.

B. Results

The overall system shares the same architecture of com-
mon visual SLAM as is shown in Figure 4. In our

https://youtu.be/h6W1JF9h4wk


project, we used ROS to communicate between adapted
MaskModule and ORB-SLAM3. The mask node published
/camera/img raw message including the RGB frame infor-
mation after being masked and this message is subscribed
by the ORB-SLAM3 node to solve the tracking problem.
The system is run with ROS Noetic under Ubuntu 20.04 on
a laptop with a single NVIDIA RTX 3060 GPU and Intel
i7-12700H CPU.

Figure 3 shows how APE changes with time when we were
testing with sequence 07 in the KITTI dataset. The right-
hand side compares the performance of MonoRec-SLAM
and ORB-SLAM3.

TABLE I: Comparison of APE in RMSE. Results for Dy-
naSLAM and ORB-SLAM3 are taken from original papers
and verified in our experiments shown in brackets.

Sequence MonoRec-SLAM DynaSLAM [1] ORB-SLAM3 [4]
00 6.71 7.55 (7.77) 5.33 (7.14)
04 1.39 0.97 (0.65) 1.62 (1.45)
05 4.60 4.60 (6.77) 4.85 (4.84)
07 2.09 2.36 (3.66) 2.26 (3.90)

Besides sequence 07, we also ran MonoRec-SLAM on
sequences 00, 05, and 07. The RMSE(root mean square
error) comparison between MonoRec-SLAM, DynaSLAM
and ORB-SLAM3 is shown in Table I.

The comparison of computation time in milliseconds for
generating masks and tracking poses between MonoRec-
SLAM and DynaSLAM is shown in TableII.

We also tried applying MonoRec-SLAM on TUM dataset.
However, the result is not that idea and it continuously loses
track of its own position. Figure 6a shows the mask we get
with the TUM freiburg 3 dataset.

TABLE II: Comparison of mask inference and tracking time.
Results for DynaSLAM are taken from original paper.

MonoRec-SLAM DynaSLAM [1]
Masking (ms) 83.10 195.00
Tracking (ms) 104.62 333.68

Real-Time Yes No

C. Discussion

The graph on the left in Figure 3, shows the APE of
MonoRec-SLAM mapped onto the ground truth trajectory.
The red dotted circles highlighted on this graph show the
position on the trajectory, at which our method performs
significantly better than ORB-SLAM3. In the right figure in
Figure 3, MS stands for MonoRec-SLAM and OS stands for
ORB-SLAM3. The red dotted circles on this figure highlight
the timestep (around 25 and 85 seconds) at which the APE
for MonoRec-SLAM is significantly lower (46% and 63%
respectively) than that of ORB-SLAM3. In these instances,
the frame consists of moving or dynamic objects which are
being masked by the adapted MaskModule, and therefore
the error at these points for our method is low, justifying
the functionality of the dynamic mask generated from the
adapted MaskModule.

From Table I, we can observe that our method has the
best performance, compared to both DynaSLAM and ORB-
SLAM3 for sequences 05 and 07 with an average APE
improvement by 6.03%. While for sequence 00, ORB-
SLAM3 seems to have the best performance, our method
still performs better than DynaSLAM. A potential reason
why ORB-SLAM3 outperformed both MonoRec-SLAM and
DynaSLAM on sequence 00 is that sequence 00 is a long-
duration dataset with multiple loop closure, which already
provides enough features for mapping and localization. In
this case, masking might just reduce the features it detects
and reduce the accuracy of the final result.

From Table II, it is evident that our method is 42.61%
faster in mask inference and takes 31.35% the time in camera
pose tracking in comparison with DynaSLAM, enabling it to
perform SLAM in real time (∼10 FPS).

(a) MonoRec segmentation (b) DynaSLAM segmentation

Fig. 6: Failure cases on the TUM dataset

Regarding our failure on the TUM dataset, we have
proposed two possible reasons. By comparing Figure 6a and
Figure 6b, instead of masking the two moving people in the
scene, the adapted MaskModule is randomly masking the
background. One possible reason is that the two people are
close to the camera and covered a large area of the scene,
they might be considered as the background, and the real
background is considered as a moving object, leading to the
random mask on the background. Another possible reason is
that the two people are moving too slowly to be recognized
by the adapted MaskModule.

D. Future Work

Considering the failure in evaluation on the TUM dataset,
one desired future work would be revising the design and
implementation of MonoRec to increase the robustness of
the adapted MaskModule.

(a) Before (b) After

Fig. 7: Background inpainting on KITTI dataset

Besides, we plan to finalize the background inpainting
function. Before the paper submission, we deployed the



learning-based Flow-edge Guided Video Completion [10]
algorithm for background inpainting of segmented frames
where Figure 7 shows its performance. Figure 7a shows
the figure before inpainting and Figure 7b shows the figure
after segmentation and inpainting. It works well with a high-
quality mask, but when dynamic objects are not ideally
segmented, the inpainting technique will distorted the frame.
At the same time, the function increases the runtime to a
large extent that, we can no longer run the overall system in
real-time with inpainting. In the future, we will optimize the
algorithm and take the advantages of Homography transform
techniques for inpainting alignments [11] for more accurate
inpainting and faster runtime.

V. CONCLUSION

We input RGB frames into the adapted MaskModule and
generated masked frames, and then obtained the enhanced
keyframes by ORB-SLAM3 module tracking the masked
segmented frames. We evaluated our method on both KITTI
and TUM datasets, and the results were compared with
DynaSLAM. The dynamic objects are masked in real time
successfully on the KITTI dataset, while it is failed on
the TUM dataset. By evaluating the APE, we demonstrated
that MonoRec-SLAM performs better than DynaSLAM in
most sequences. What’s more, we also demonstrated that
our method runs faster than DynaSLAM and supports real-
time operation by comparing the mask inference, tracking
time, and real-time operation. We concluded that our method
can achieve in most cases a higher accuracy on the KITTI
dataset, obtains a more static map of scenes, and achieves
a great balance between real-time capability and dynamic
object masking.

REFERENCES

[1] B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

[2] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “Ds-
slam: A semantic visual slam towards dynamic environments,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1168–1174.

[3] F. Wimbauer, N. Yang, L. Von Stumberg, N. Zeller, and D. Cremers,
“Monorec: Semi-supervised dense reconstruction in dynamic environ-
ments from a single moving camera,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
6112–6122.

[4] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[5] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time
instance segmentation,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 9157–9166.

[6] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE, no. 4, 2017.

[7] J. Wang, X. Chen, J. Yan, and J. Liu, “Research on underwater
complex scene slam algorithm based on image enhancement,” Journal
of Physics: Conference Series, vol. 1797, no. 1, p. 012020, 2021.

[8] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference
on computer vision and pattern recognition. IEEE, 2012, pp. 3354–
3361.

[9] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in 2012
IEEE/RSJ international conference on intelligent robots and systems.
IEEE, 2012, pp. 573–580.

[10] C. Gao, A. Saraf, J.-B. Huang, and J. Kopf, “Flow-edge guided
video completion,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII
16. Springer, 2020, pp. 713–729.

[11] M. Granados, K. I. Kim, J. Tompkin, J. Kautz, and C. Theobalt,
“Background inpainting for videos with dynamic objects and a free-
moving camera,” in Computer Vision–ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part I 12. Springer, 2012, pp. 682–695.

[12] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[13] H. Liu, R. Soto, F. Xiao, and J. L. Yong, “Yolactedge: Real-time
instance segmentation on the edge,” in International Conference on
Robotics and Automation, 2021.


	INTRODUCTION
	RELATED WORK
	DynaSLAM
	YOLACT

	METHODOLOGY
	MonoRec
	ORB-SLAM3

	EVALUATION AND DISCUSSION
	Datasets
	Results
	Discussion
	Future Work

	CONCLUSION
	References

